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Driven maps and the emergence of ordered collective behavior in globally coupled maps
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A method to predict the emergence of different kinds of ordered collective behaviors in systems of globally
coupled chaotic maps is proposed. The method is based on the analogy between globally coupled maps and a
map subjected to an external drive. A vector field which results from this analogy appears to govern the
transient evolution of the globally coupled system. General forms of global couplings are considered. Several
applications are giveriS1063-651X98)05507-X]

PACS numbes): 05.45+4+b, 02.50—r

I. INTRODUCTION After a transient time required to reach the OCB, the
asymptotic collective behavior of the GCM system is char-
Coupled map lattices constitute useful models for theacterized, in many cases, by a periodic or quasiperiodic time
study of spatiotemporal processes in a variety of contextgvolution of the mean state); and of the coupling function
[1]. There has been recent interest in the investigation of theél;. The elements of the system follow a behavior similar to
emergence of ordered collective behavi6®CB’s) in sys- H;, and in general are segregated in clusters which tend to
tems of interacting chaotic elements by using coupled majpe out of phas¢10]. Here we focus on the relationship be-
lattices[2-5]. Such cooperative phenomena have been coniween periodically driven maps and the emergence of peri-
sidered relevant in many physical and biological situationsodic and quasiperiodic OCB’s in GCM’s.
[6—9]. In particular, globally coupled map&CM’s) [10] In Sec. Il, a relation between driven maps and GCM's is
can exhibit OCB’s such aga) formation of clusters, i.e., established. A method for predicting clustered OCB's in glo-
differentiated subsets of synchronized elements within théally coupled maps is presented in Sec. lll. Several applica-
network[11]; (b) nonstatistical properties in the fluctuations tions of the method are shown in Sec. IV. Finally, a discus-
of the mean field of the ensemHl&1,12; (c) global quasi- sion of the possibilities and limitations of the method is
periodic motion[13,14]; and different collective phases de- given in Sec. V.
pending on the parameters of the syster8].
Much effort has been dedicated to establishing the neces-||. RELATION BETWEEN DRIVEN MAPS AND GCM'S
sary conditions for the emergence of various types of OCB's,
mostly involving direct numerical simulations on the whole  Note that the evolution of any element in the GCM is
globally coupled system. However, this direct proceduredetermined by the initial conditions of the whole system
gives little information about the mechanism for the emer-throughH, while the evolution of the driven map is deter-
gence of OCB’s. In this paper, we propose an alternativenined by its initial COﬂditiOFSl and L. The basic fact that
method which allows us to gain insight into the conditionsallows one to establish a relationship between driven maps
for the emergence of specified types of collective behaviorand GCM'’s is that in GCM systems all the elements are
The procedure is suggested by the analogy between a gl@ffected by the coupling in exactly the same way at all times,

bally coupled map system and therefore the behavior of the elemgptin the GCM is
equivalent to the behavior of a single driven ni&u. (2)],
X1 =(1—e)f (XD +eH(xX X2, ... x) (1 with L;=H, and initial conditions,=x .
] ] Additionally, if a GCM [Eq. (1)] reaches an OCBH;
and an associated driven map displays in general an ordered asymptotic behavior. There-

fore, the associated driven mipq. (2)] for these asymptotic
ordered states of GCM'’'s should contain a rather regular
) drive L;. Conversely, the study of the dynamics of Eg)

In Eq. (1), x{ (n=1,... N) is the state of theith ele-  for a given class of drivek, can provide information about
ment at discrete timé, N is the size of the systeng is the  the possible existence of a similar class of OCB’s in corre-
coupling parameterf(x) describes the local dynamics, and sponding GCM'’s, without doing a direct simulation on the

St+1=(1—€)f(s) + €Ly 2

H(x{ X7, ... x{) is the global coupling function. A com- the latter system. In particular, periodic drives resulting in a
monly used form foH is the mean field couplingl0,12,14;  periodic asymptotic state o in Eq. (2) may be used to
however, the global couplingl,;=H(x! ,xZ, ... xI) in Eq.  predict the emergence of a periodic or quasiperiodic OCB in

(1) is assumed to be any function invariant to argument pera GCM [Eq. (1)].

mutations. In Eq(2), s, is the state of the driven map at a  In order to compare the dynamics of the GCM and the
discrete timet, f(s;) is the same local dynamics as in Eq. driven map, it is useful to introduce some notation for their
(1), andL, is the driving term. In general,, may be any asymptotic periodic regimes. For a GCM, described by Eq.
function of time. (1), consider the case of an OCB consistingkofclusters
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with period P. In this case, the asymptotic behavior of the
system can be characterized bK& P matrix
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=1,2,... M) the asymptotic periodic responsesp(lf,sl),
that is, reached fors;e{s;};, then all the possible
asymptotic responses can be represented by ¥ matrix

®)

o=

where thekth column contains the temporal sequence of the

P values adopted by the elements belonging toktteclus-
ter; and thdth row displays the state of all clusters at time
The time steft has been replaced by the indewhich runs
from 1 to the periodicity P. Denoting by &; (i
=1,2,... P) the asymptotic values adopted by the global
couplingH,, we have

k k
o Xi9e 0 Xioe

N, times

<D,~=H(X},.,.,X},..

N, times

K K
s Xi e X4 )a

Ny times

(4)

where N, is the number of elements in theh cluster and

2 N=N. Thus we may express the asymptotic temporal

behavior ofH, by the vectord=(®,, ... @, ... Dp).

On the other hand, for a driven map subjected to a peri-

odic driveL, with periodP, a similar notation can be estab-
lished. The long-term response gf depends on the initial

conditions;, and on the specific sequence of values adoptec

by L,, which we wil denote as the vectorl
=(L¢,....L,....Lp). The responset(lf,sl) may be pe-
riodic on a regiorR of the P-dimensional space spanned by
all possible vectork. For a giveri: e R, there are, usuallyl
different asymptotic periodic responsesspfvith periodM,
each one associated with a set of initial conditigss};,
wherej=1,2,...J. It may happen that all the asymptotic
responses do not have the same period, but are submultipl
of the response with maximum periodicity. In this case, all

the asymptotic periodic responses can be seen as having tt

same maximum periodicityM. If we denote byo! (i
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FIG. 1. Main subregionR,J\,1 for the driven logistic map with
P=2. Parameter values are-1.7 ande=0.2. The line at. ;=0.35
is shown as a guide for Fig. 2.

o
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where thejth column contains the asymptotic periodic re-
sponse of; for the initial statess; e {s,};, and theith row
displays the state of all the possible asymptotic responses at
timei. As before, the time step has been replaced by the
indexi running from 1 to the periodicitil of the response.
The regionR may consist of various subregioﬁ&;},I , where

J different asymptotic responses of periodicit§ occur.
Each subregioﬂRﬂ,l can be characterized by a response ma-
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FIG. 2. (3 a‘i (thick curves$ as functions ofL, with fixed L,
=0.35; the various sets of initial conditiofs,}; that lead to dif-
ferento! are indicated with varying grey tones. The labels on the
top correspond to the subregioﬁé1 crossed by the vertical line at
L,=0.35in Fig. 1.(b) On the left, the two sets,}; corresponding
to the interval labeled aR3 in (a). On the right, the asymptotic
responsew! in time, forL,=0.35 andL,=0.48.
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trix a'(l:) of size JXM. In particular, the subregioﬁg is L, is a solution of this set dP nonlinear equations, then the
relevant, since there the asymptotic responses of the driveself-consistent response matniv(l__:) will also describe an
map have the same periodicity than the drive, and conseycB for which® =L, . In other words, ifdb=6 =L, , a set
quently the analogy between Ed4) and(2) can be estab- of N independent driven maps consisting at timef N,
lished. _ _ _ . maps with the valuer!, N, maps witho?, ..., andNg
As an illustration, Fig. 1 shows the main subregi®ls  maps withoX | is undistinguishable from a GCM displaying

resulting from Eq.(2) for a logistic mapf(x)=1—rx?, . e e
driven by different_; with the same perio®=2. Parameter an OCB gharactenzed_ by=or(L,), and a distribution .Of
elements in clusters given by, ... ,Ny, ... ,Nx. Obvi-

— — ; J oo
values arer=1.7 ande=0.2. The subregiongj, indicate ously, this OCB is a period® solution of Eg.(1). This
where J asymptotic responses of maX'I“Pm periodicky equivalence is the basis for the method presented in the next
occur when the components andL, of L lie on the range  gection.

[—1,1]. As expected, this diagram is symmetric about the
diagonalL;=L,. The subregiorRi consists of three differ-
ent asymptotic responses having periods 2, 4, and 4. The
five different asymptotic responses in subregRgmave pe-
riods 2, 8, 8, 8, and 8. Each of the other indicated subre- Now suppose that we want to find out, for a given GCM
gionsRy, consist ofJ different asymptotic responses having system described by Eql), if an OCB with the following
the same perio. The structure of this diagram is actually characteristics can be observéd: collective periodP, and
more complex; there are small zones in between the marke(i) a distribution of elements i clusters corresponding to
subregions where the driven map reaches a variety of perR partition{py}={p1,p2, - .. Pk}, wherep,=N,/N is the
odic response@ot shown in Fig. 1 We have also observed fraction of elements in thé&th cluster. Then, based on the
shrimplike structures for ; andL, outside the range—1,1], analogies presented in Sec. Il, the following procedure may
similar to those reported for two-parameter mips). be employed to answer this question:

Figure 2a) shows, for the same parameters used in Fig. 1, (a) Determine if there exists a regioRl in which the
the dependence of the asymptotic responsgen both the response matrixr is KX P, by exploring the asymptotic re-
initial conditions; and the componert, for a periodic drive  sponses of the associated driven nigp. (2)], for different
with P=2. The value ot_, is fixed to 0.35. As it can be seen drivesL, of the same period.

IIl. METHOD FOR PREDICTING CLUSTERED
OCB IN GLOBALLY COUPLED MAPS

in Fig. 1, the subregionR3, R:, R5, R:, andRj are found (b) Construct the associated coupling vectd
when increasind_, with fixed L;=0.35. For each value of =(®4,...,0;,...,0p), whose components are given by
L,, Fig. Z2a) indicates with varying gray tones, the various Eq. (6), by takingN,=p, N.

sets of initial CondiltionS{Sl}j that lead to different (C) In the regioané of the P_dimensiona": space, con-

asymptotic responses! . The thick curves in Fig. @) cor-  struct the vector field

respond to thd values adopted by the first row of the matrix

o, i.e.,d}, as functions of ,. Figure Zb) shows, on the left, V=L-0. 7
the two sets of initial conditiongs, }; in the subregiorR3 of

Fig. 2@) for L,e[—0.02, 0.4§ andL,=0.35. On the right, | the resulting vector field in the regionRY is such that1)
E'g_‘ g(g);hoé\{_s t_hg 2’;0 asymptotic responsgisin time, for it has a locus wher&=0, and(2) it is convergent toward
1= U.90 andL;=0.40. this locus, then an OCB having characteristidsand (ii)

i Thﬁ analggy between'atGdCI\éI .W'th agwven cou%llng fun.c- an, in general, take place for appropriate initial conditions
ion H, and an associated driven map can be carried, \he GCM system.

further by defining an associated coupling vecter As argued in Sec. II, conditiofi) implies the existence of
=(01,....0;,...,0p), whose components are given by an OCB solution for Eq(1), characterized by= a'(L—:),

with the partition{p,p-, - . . ,pk}. That is, this method pro-

©;,=H(s},...,0l,..., af, e ,af, e ,af", cee ,of‘—) vides a graphic approach for finding a solutiop to the set

of the P nonlinear equation®;=L; .
Condition (2) is related to the evolutive tendency of the
GCM toward this OCB solution. At each point{, ... ,Lp)
on theRK region, a vectoN can be drawn with its origin at
- ) this point and its tip at the pointd, ...,0p), which is
The \{ectorG) dependg on the functional form of the global simply the succession of the values adopted by the cou-
coupling, on the partition in thé asymptotic responses, and pjing ‘function H when evaluated at the asymptotic states
on o, which itself is function ofL. contained ino(Ly, ... Lp). Then, because of the analogies
Thus the asymptotic behavior of the GCM has been charbetween a GCM system and its associated driven map, it is
acterized by the matrix and by the vectofb. Similarly, the  expected that the global couplind; of a GCM having a
matrix o and the vectol® characterize the asymptotic be- Séquence of values matching the sef (. .. ,Lp) will tend
havior of the associated driven map. The main point is thato evolve in the direction of the vectoV located at
an equivalence between both systems arises Wher® and (L4, ... ,Lp). Itis also expected that the ability of the vector

J=K, and simultaneously the conditigh= L is fulfilled. If V to signal the evolutive tendency of a GCM increases as the

N, times N, times N, times

(6)
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transient states of the GCM become similar to trle states corb =L . During this transient interval, the elements of the
tained in matrixo(L4, ... ,Lp). If the vector fieldV is con-  system segregate in “swarms” which progressively shrink,
vergent toward a locus wheé=0, then a GCM falling in  @nd eventually form clusters. Simultaneousty,evolves to-

this convergent region should evolve toward the state deward its asymptotic behavior. For an initial conditi¢ry}

scribed byo(L). The set of partitiongp,} for which the ~ hat leads to the partitiofip,}, the trajectory ofH, toward

vector fieldV satisfies condition§l) and (2) are those that ;Ds_ I;i* fraarj]e?t?)r;epjrgi?]?:;edtrzg tf?c-)?r:;nﬁ(rlsmnalh ipattcz)e

can arise in the GCM system for appropriate initial condi—(H Hy) to (H H )’ TP o

tions. The method does not tell which initial conditions of *_F*%" """ 2P” N

the GCM will be conducive toward a specific partition in this (P1+ - - - @p) = . The transient trajectory ¢ can be su-

set of possiblgpy}. perposed to the vector flekil corresponding to the partition
There exist some cases in which the couplifigdoes not  {px}. Then the geometry of and the transient trajectory of

reach the solutioN'=0 but remains around it, even when the thé coupling functiorH, toward its asymptotic periodic be-

field V is convergent. As shown in one of the applications"@vior ® =L, can be compared. This is a way fo test the
below, the OCB in these cases may still be clustered budbility of V as indicator of the transient trajectory i .

quasiperiodic. A detailed study of the properties that the field_ 't Should be noted that, without a direct simulation on the

- . . . .. GCM system, step&@)—(c) of the method can be performed,
v mLfSt. possess in order to be _assomated with quasmenodg:nd conditiong1) and(2) can be checked, in order to predict
OCB's is out of the scope of this paper.

C . that there must exist initial conditior{}} that conduce the
The form of the vector field/, and that of the locu¥ GCM toward the locus/=0.

=0, depend on both the local map and the coupling function.

The emergence of an OCB in a GCM is the result of the

interplay between local dynamics and the global coupling, IV. APPLICATIONS

both being integral parts of the system. In fact, the method o

allows one to explore the effect of varying either ingredient N order to show applications of the prggedurg, we choose
of the GCM[Eq. (1)], through the changes in the geometry 9lobally coupled logistic map§(x) =1—rx* in their chaotic

of the vector fieldV, which is obtained from the asymptotic range, and .lOOk for an OCB consisting .Of two clugters of
response of the associated driven nig. (2)]. period 2. Different coupling functions will be considered.

The method can be applied whenever the associated petiﬁ"’""’"“eter V?'“eti a;rfe IfI'XGd Iﬁt:”l]-7l<’:1ntd:s=0.2I |n2the f(IjrSt
odically driven map exhibits periodic asymptotic behaviors. ree exampies that follow. In the last exampie, 2, ande

- is varied.
in some r'egions' of thd?_ space...There i§ a large family of (1) As a first example, the coupling functidd, is as-
maps which s_atlsfy thls_ condition. Notice that the method§umed to be the arithmetic mean, i.Ht=(1/N)E,’:':1X?
does not require a previous knowledge of the occurrence of ). Therefore.©: = 1, 2 and V=0~ L, (i
the searched OCB in a given GCM to predict its existence. (X _ 9= P10+ P20y, na Vi ik
Additionally, the method provides at least one initial condi- =1,2). Figure &) shows the vector field/(Ly,Lz,py) in
tion {x7}={x1,x%, ... x}} to put the associated GCM in the the regionR; for partitions p,=0.56 andp,=1-p;. The
predicted OCB: it suffices to take, as the initial conditionvector fieldV(L,,L,,p;) is plotted as arrows of length pro-
{x7} of the GCM, the initial condition prescribed by any row portional to|V|, its direction given by tan'(V,/V,), and its
of the matrixo(L, ). Many other initial conditiongx}} may origin at (Ly,L,). For different partitions the vector fiel
evolve toward this particular OCB; however, the methodmaintains the same appearance, except that the point where
does not give this information. V=0 moves along the dashed curve in Fi(g)3sp; varies.

The partition{p,} can be varied to predict all possjble The dashed curve is the locMs=0 as a function op;. The
OCB's by looking at the convergence of the vector fi#ld  two labeled values op; at the ends of the dashed curve in
and at the locu¥/=0 as a function of p}. Moreover, the  Fig. 3g) indicate the position of the convergent poWit- 0
first step of the proceduréand the most time consuming for these critical values of,. The marks on this curve are
must be executed only once for a given local dynarfiesd  made at intervals of 0.02 ip,. Thus the method predicts that
coupling strengtte; thereafter, stepgb) and(c) can be per-  an OCB of period 2 with two clusters can be observed in the
forme_d repeatedl_y for many q!fferent functional forms c_)f the sgcM, and that the possible valuesf will lie in the range
couplingH and different partitiongps,pz, - . . .Pk}- Inthis  [0.38,0.6. However, as stated above, the method does not
way, one can efficiently explore the possible occurrence ofyide the initial condition{x[} of the GCM that will lead
various types of OCB’s in different GCM systems with the ;, o specific value op;.
same local dynamics, but differient coupling functions. In order to make a direct comparison between both, the

As mentioned, the vector fieM is related to the transient a4 \; and the transient dynamics i obtained from direct
trajectory of the GCM. In order to visualize this relation, ONe gimulation of the GCM system, Fig(l9 shows their super-
can perform direct simulations on the GCM and overlap theposition. The dynamics o, cc;rresponds to a GCM with
dynarplcs of the global coupling, on the associated vector N= 2000 elements starting from initial conditions distributed
field V. As it will be seen in the applications, the vector field on [ —1,1] with uniform probability, i.e.,(x);=0. In this
V acts as an indicator of the transient trajectory of the cou€ase, direct simulation shows that the GCM rapidly collapses
pling function H; toward its asymptotic periodic behavior into two clusters with the partitiol, =954 andN,= 1046,
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FIG. 3. (a) The vector fieldV in the regionRg for an arithmetic
mean coupling function and a partitign =0.56. The dashed curve

is the locusV=0 as a function op;. (b) Comparison of the vector

field V and the trajectory oH, for a particular case(c) Magnifi-
cation of (b). See examplél).

i.e.,, p1=0.477. The trajectory of the coupling functibty is
represented in Fig. (B) by joining (H{,H,) to (H3,H,),
..., to (@,,®,). The vector fieldV(L,,L,,p;) in the re-
gion Ré is shown for the same partitiqm, = 0.477. Note that,
for the first few iterations, theH; transient trajectory is

o‘soll\llll\l TTTT |\|||\||||\||||II/VV|/1|/
" a L L
i =06 A A A A A e eyy
., A A A A A A e
r N I N R A Y Y
040 |- N N T T T R A I
\\\\\.\.\N\\\Jlll v e e T
\\\\\\\ \7-\\ v ‘v ¢ ¥ o & o e T
. s o o o m m - . \\*l . S P e P
:e‘ by > - & - o PN O B
. 030} o o e e . . - S - —
I A Y h s e e e e . N
'JN D A ‘*\\ \\\\\ B
AP A A A A I B Y N 4
PSS A A A A D N «\* ~ = 4
RN A R A B B ORI _
V' A A A RN i
/’/’//’//’/‘fffifxxxx\_o4 i
A A R R B B S S S SN il
VA A R S B B B BN \ J
0.10 |Iﬂlﬁlﬂ \ﬂ |/I \/I Ifl If\|7‘||f\¢li|1l\l|llll‘llll
0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
Ly , Hay
0320 I T ’\\ '\{'&l&|bl‘l,}l 2/|Z
T~ > \.\\\ VoL & e
F=— o~~~ \\\ Voo s & 4
r— = - = = ~ o P’
F—o = = = - - e g
0310—> = = - -~ - - - A e e
[ e A B I — e e — —d
L7 7 7 2 2 -~ - = e — e— 4
L7 .72 72 2 2 2 P R R .
Iﬁ L7 777 72 72 72 7 LN N R R
- o300 "2 77 UL N N R .
- \ A7 T NRR R R R S S
- AT NORRON S SRS
A ) ARORURON RS
20n00 IAARRR
0.290
%;g;fff PANNRRRY
_//ffg;f AANNNRY
Yl RELRES
0.280 1 1 Il 1 | 1 1 1 1 1 | I’KI I'\IRR
0280 0285 0290 0295 0300 0305 0310 0315 0320

FIG. 4. (a) Comparison of the vector fied and the trajectory
of H, for the geometric mean couplingb) Magnification of (a).
See examplé2).

field V becomes a better indicator of the evolution of the
GCM system toward its OCB, as shown in Figci3 As it

can be seen in Figs(l3 and 3c), the vector fieldV contains
valuable information on how a GCM system converges to-
ward an OCB. The comparison presented in Fidb) and
3(c) has been used to verify this property of the vector field

Vina particular case. However, it should be emphasized that
this verification is not required in order to apply the proposed
method to predict the existence of OCB's.

(2) In a second example, we consider the geometric mean
of the moduli of the values of the elements of the system as
the coupling function, i.e.Ht=H,’}‘=l|x{‘|1’N. Therefore, in
the regionR5, ©;=|a}|P1X|0?|1"P1 (i=1,2). Figure 4a)
shows the comparison of the vector fie?d:orresponding to
p;=0.505 and the trajectory of the coupling functiéh.

The same initial conditions and system size as in the first

example have been used. The dashed curve is the NMcus
=0 as a function op;. In this case, the convergence to the
OCB is faster than that observed in the first example, as
shown in Fig. 4b).

(3) Even when the associated driven map has periodic
asymptotic regimes in the regmﬁ, the collective behavior

roughly suggested by the fieM, since at these early stages of the corresponding GCNEGQ. (1)] is not always periodic.
the cluster are being formed. As time progresses, the vectdn those cases the matrjx can not be constructed, but the
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042 —1—T— L L — T L — FIG. 6. The vector field/ for two identical out of phase clusters
i b ] of period 2, on the planeQ, ). The continuous curve corresponds
ol b to the locusV=0. See exampléd).
- . The geometry of the locug=0 and the type of convergence
. r ] toward it are related to different kinds of collective states,
4 - 1 such as periodic or quasiperiodic OCB’s. A quasiperiodic
Vo ossl ] OCB appears to be associated with a type of convergence of
r ] the fieldV occurring in this example. This type of conver-
- . gence may also occur for other functional formsf aindH.
aal N 7] (4) As a last example, for an arithmetic mean global cou-
- . pling H;=(x),, the method will be used to find OCB’s con-
P I N H T RS B sisting of two identical out of phase clusters of period.&.,
0.32 0.34 0.36 0.38 0.40 042

p;=p,=0.5) that result in a constaht,=C. In this case, it
is sufficient to calculate the response maihin the region
FIG. 5. (a) The vector fieldV and the trajectory of, for the R for drivesL;=L,=C. The vector fieldV lies on the line
modified arithmetic mean global couplinth) The asymptotic re- L,;=L, becausd,= %(oi-# cri)=®2= %(a%—i— ag), i.e., the
turn map of the mean state of the system. See exa(8ple two asymptotic responses are out of phase, and their sum is
. constant in time. In the present example, the figld (0,
vector fieldV is still useful. In this example, the method will —C ®,—C) can be represented on the plai €) as hori-
be used to infer a global coupling function capable of pro-,4nial arrows of length proportional {/], direction given
duc!ng a qua5|per_|oc_j|c OCB with two clust_ers. This can beoy the sign of®,— C, and origin aC. Taking advantage of
achieved by modifying the coupling function of & known ;. i ctionality, the vector field is plotted in Fig. 6 on

case of periodic OCB, just near its convergent p()?nio. the plane C,e), for the logistic map at =2.0. The continu-
Then we may expect that the modified GCM will not reach - :
ous curve corresponds to the locus=0. In this example,

its original periodic OCB, but would remain close to it. For the method has been used #62 andP=2, but it may

the first example, this can be done by noticing that whes also be applied to predict OCB's with other numbersKof

near the convergent point, one of the two asymptotic '®identical out of phase clusters with periodicRyresulting in
sponses of the driven map Rﬁ adopts a value close t0 0.86 , .onstant mean field in other rangeseof

every two time stepsi.e., o} in Fig. 2). Then the coupling
function of the first example may be modified in such a way
that only near 0.86 the function is drastically affected. We V. CONCLUSIONS
have tried with coupling functions of the type:

<>y

We have presented a method to study the emergence of
1 ordered collective behaviors in globally coupled maps, based

1—exp<—) . (8) on the analogy between these systems and a driven map. A
b(x{—0.86) vector field defined on the space of the drive term in the

driven map acts as an indicator of the evolution of the cou-

The resulting vector fiel and the transient trajectory of; pling function in the GCM. The field/ is particularly effi-

for parameters valuea=1.7 andb=—10% in Eq. (8) are  cient in pointing the transient trajectory of the coupling func-
shown in Fig. %a). Additionally, the asymptotic behavior of tion when the associated driven map reaches its asymptotic
the return map of the mean field of the GCM is shown in Fig.periodic response in few iterations. The method can be used
5(b). This example shows the usefulness of the method foto predict if specific types of OCB’s can take place in a GCM
designing globally coupled systems with specific featuressystem, and to visualize its associated basin of attraction. In

1 N
Hi==> x{1-a
Ni=1
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the examples with mean field coupling, several clustered The limitation of this method lies on the fact that the
OCB'’s were predicted to occur in globally coupled logistic associated driven map must possess periodic asymptotic re-
maps, in accordance to numerical simulations performed bgponses, so that the matixmay be defined. A large family
Kaneko[10]. Examples(3) and (4) have illustrated how to of maps fulfills this condition. The examples presented here
use the procedure for other functional forms of the globalshow that progress in the understanding of the collective
coupling. It is interesting to note that quasiperiodic OCB’sbehaviors of the GCM can be made by investigating its re-
may occur in regions where the associated driven map hdation with driven maps. Recently, this relation was noticed
periodic asymptotic regimes, as shown in exam{@e A in Ref.[16]. Extensions of the method presented here could
detailed study of the necessary properties that the vector fielde applied to other phenomena in globally coupled systems,
V must possess in order to be associated to a periodic &uch as control of chaos, chaotic synchronization, phase seg-
quasiperiodic OCB would be an interesting problem for fu-regations, and intermittent OCB'’s.

ture work. In the examples, the field could be represented
on a plane, but, folP=3, projections ofV may serve to
reveal its global structure. AB increases, the computation
time increases pOtentia”y Wltﬁ—)Then numerical methods ) This Work,was Supporte’d by Consejo de Desarrollo Cien-
to search for convergence towave=0 may be used to speed tifico, Humanstico y Tecnolgico, of the Universidad de Los
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