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Driven maps and the emergence of ordered collective behavior in globally coupled maps

A. Parravano and M. G. Cosenza
Centro de Astrofı´sica Teo´rica, Facultad de Ciencias, Universidad de Los Andes, Apartado Postal 26 La Hechicera,

Mérida 5251, Venezuela
~Received 5 August 1997; revised manuscript received 23 February 1998!

A method to predict the emergence of different kinds of ordered collective behaviors in systems of globally
coupled chaotic maps is proposed. The method is based on the analogy between globally coupled maps and a
map subjected to an external drive. A vector field which results from this analogy appears to govern the
transient evolution of the globally coupled system. General forms of global couplings are considered. Several
applications are given.@S1063-651X~98!05507-X#

PACS number~s!: 05.45.1b, 02.50.2r
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I. INTRODUCTION

Coupled map lattices constitute useful models for
study of spatiotemporal processes in a variety of conte
@1#. There has been recent interest in the investigation of
emergence of ordered collective behaviors~OCB’s! in sys-
tems of interacting chaotic elements by using coupled m
lattices@2–5#. Such cooperative phenomena have been c
sidered relevant in many physical and biological situatio
@6–9#. In particular, globally coupled maps~GCM’s! @10#
can exhibit OCB’s such as~a! formation of clusters, i.e.
differentiated subsets of synchronized elements within
network @11#; ~b! nonstatistical properties in the fluctuation
of the mean field of the ensemble@11,12#; ~c! global quasi-
periodic motion@13,14#; and different collective phases de
pending on the parameters of the system@13#.

Much effort has been dedicated to establishing the ne
sary conditions for the emergence of various types of OCB
mostly involving direct numerical simulations on the who
globally coupled system. However, this direct proced
gives little information about the mechanism for the em
gence of OCB’s. In this paper, we propose an alterna
method which allows us to gain insight into the conditio
for the emergence of specified types of collective behavi

The procedure is suggested by the analogy between a
bally coupled map system

xt11
n 5~12e! f ~xt

n!1eH~xt
1 ,xt

2 , . . . ,xt
N! ~1!

and an associated driven map

st115~12e! f ~st!1eLt . ~2!

In Eq. ~1!, xt
n (n51, . . . ,N) is the state of thenth ele-

ment at discrete timet, N is the size of the system;e is the
coupling parameter,f (x) describes the local dynamics, an
H(xt

1 ,xt
2 , . . . ,xt

N) is the global coupling function. A com
monly used form forH is the mean field coupling@10,12,14#;
however, the global couplingHt5H(xt

1 ,xt
2 , . . . ,xt

N) in Eq.
~1! is assumed to be any function invariant to argument p
mutations. In Eq.~2!, st is the state of the driven map at
discrete timet, f (st) is the same local dynamics as in E
~1!, and Lt is the driving term. In general,Lt may be any
function of time.
581063-651X/98/58~2!/1665~7!/$15.00
e
ts
e

p
n-
s

e

s-
s,

e
-
e

.
lo-

r-

After a transient time required to reach the OCB, t
asymptotic collective behavior of the GCM system is ch
acterized, in many cases, by a periodic or quasiperiodic t
evolution of the mean statêx& t and of the coupling function
Ht . The elements of the system follow a behavior similar
Ht , and in general are segregated in clusters which ten
be out of phase@10#. Here we focus on the relationship be
tween periodically driven maps and the emergence of p
odic and quasiperiodic OCB’s in GCM’s.

In Sec. II, a relation between driven maps and GCM’s
established. A method for predicting clustered OCB’s in g
bally coupled maps is presented in Sec. III. Several appl
tions of the method are shown in Sec. IV. Finally, a discu
sion of the possibilities and limitations of the method
given in Sec. V.

II. RELATION BETWEEN DRIVEN MAPS AND GCM’S

Note that the evolution of any element in the GCM
determined by the initial conditions of the whole syste
throughH, while the evolution of the driven map is dete
mined by its initial conditions1 andLt . The basic fact that
allows one to establish a relationship between driven m
and GCM’s is that in GCM systems all the elements a
affected by the coupling in exactly the same way at all tim
and therefore the behavior of the elementxt

n in the GCM is
equivalent to the behavior of a single driven map@Eq. ~2!#,
with Lt5Ht and initial conditions15x1

n .
Additionally, if a GCM @Eq. ~1!# reaches an OCB,Ht

displays in general an ordered asymptotic behavior. The
fore, the associated driven map@Eq. ~2!# for these asymptotic
ordered states of GCM’s should contain a rather regu
drive Lt . Conversely, the study of the dynamics of Eq.~2!
for a given class of drivesLt can provide information abou
the possible existence of a similar class of OCB’s in cor
sponding GCM’s, without doing a direct simulation on th
the latter system. In particular, periodic drives resulting in
periodic asymptotic state ofst in Eq. ~2! may be used to
predict the emergence of a periodic or quasiperiodic OCB
a GCM @Eq. ~1!#.

In order to compare the dynamics of the GCM and t
driven map, it is useful to introduce some notation for th
asymptotic periodic regimes. For a GCM, described by E
~1!, consider the case of an OCB consisting ofK clusters
1665 © 1998 The American Physical Society
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1666 PRE 58A. PARRAVANO AND M. G. COSENZA
with period P. In this case, the asymptotic behavior of t
system can be characterized by aK3P matrix

x5S x1
1 . . . x1

K

�

A x i
k A

�

xP
1 . . . xP

K

D , ~3!

where thekth column contains the temporal sequence of
P values adopted by the elements belonging to thekth clus-
ter; and thei th row displays the state of all clusters at timei .
The time stept has been replaced by the indexi which runs
from 1 to the periodicity P. Denoting by F i ( i
51,2, . . . ,P) the asymptotic values adopted by the glob
couplingHt , we have

~4!

whereNk is the number of elements in thekth cluster and
(kNk5N. Thus we may express the asymptotic tempo
behavior ofHt by the vectorFW 5(F1 , . . . ,F i , . . . ,FP).

On the other hand, for a driven map subjected to a p
odic driveLt with periodP, a similar notation can be estab
lished. The long-term response ofst depends on the initia
conditions1, and on the specific sequence of values adop
by Lt , which we will denote as the vectorLW

5(L1 , . . . ,Li , . . . ,LP). The responsest(LW ,s1) may be pe-
riodic on a regionR of the P-dimensional space spanned b
all possible vectorsLW . For a givenLW PR, there are, usually,J
different asymptotic periodic responses ofst with periodM ,
each one associated with a set of initial conditions$s1% j ,
where j 51,2, . . . ,J. It may happen that all the asymptot
responses do not have the same period, but are submult
of the response with maximum periodicity. In this case,
the asymptotic periodic responses can be seen as havin
same maximum periodicityM . If we denote by s i

j ( i

FIG. 1. Main subregionsRM
J for the driven logistic map with

P52. Parameter values arer 51.7 ande50.2. The line atL150.35
is shown as a guide for Fig. 2.
e

l

l

i-

d
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ll
the

51,2, . . . ,M ) the asymptotic periodic response ofst(LW ,s1),
that is, reached fors1P$s1% j , then all the possible
asymptotic responses can be represented by theJ3M matrix

s5S s1
1 . . . s1

J

�

A s i
j A

�

sM
1 . . . sM

J

D , ~5!

where thej th column contains the asymptotic periodic r
sponse ofst for the initial statess1P$s1% j , and thei th row
displays the state of all the possible asymptotic response
time i . As before, the time stept has been replaced by th
index i running from 1 to the periodicityM of the response.
The regionR may consist of various subregionsRM

J , where
J different asymptotic responses of periodicityM occur.
Each subregionRM

J can be characterized by a response m

FIG. 2. ~a! s1
j ~thick curves! as functions ofL2 with fixed L1

50.35; the various sets of initial conditions$s1% j that lead to dif-
ferent s i

j are indicated with varying grey tones. The labels on t
top correspond to the subregionsRM

J crossed by the vertical line a
L150.35 in Fig. 1.~b! On the left, the two sets$s1% j corresponding
to the interval labeled asR2

2 in ~a!. On the right, the asymptotic
responsess i

j in time, for L150.35 andL250.48.
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PRE 58 1667DRIVEN MAPS AND THE EMERGENCE OF ORDERED . . .
trix s(LW ) of size J3M . In particular, the subregionRP
J is

relevant, since there the asymptotic responses of the dr
map have the same periodicity than the drive, and con
quently the analogy between Eqs.~1! and ~2! can be estab-
lished.

As an illustration, Fig. 1 shows the main subregionsRM
J

resulting from Eq.~2! for a logistic map f (x)512rx2,
driven by differentLt with the same periodP52. Parameter
values arer 51.7 ande50.2. The subregionsRM

J indicate
where J asymptotic responses of maximum periodicityM

occur when the componentsL1 andL2 of LW lie on the range
@21,1#. As expected, this diagram is symmetric about
diagonalL15L2. The subregionR4

3 consists of three differ-
ent asymptotic responses having periods 2, 4, and 4.
five different asymptotic responses in subregionR8

5 have pe-
riods 2, 8, 8, 8, and 8. Each of the other indicated sub
gionsRM

J consist ofJ different asymptotic responses havin
the same periodM . The structure of this diagram is actual
more complex; there are small zones in between the ma
subregions where the driven map reaches a variety of p
odic responses~not shown in Fig. 1!. We have also observe
shrimplike structures forL1 andL2 outside the range@21,1#,
similar to those reported for two-parameter maps@15#.

Figure 2~a! shows, for the same parameters used in Fig
the dependence of the asymptotic responsess1

j on both the
initial conditions1 and the componentL2 for a periodic drive
with P52. The value ofL1 is fixed to 0.35. As it can be see
in Fig. 1, the subregionsR4

2, R4
3, R2

2, R4
3, andR8

5 are found
when increasingL2 with fixed L150.35. For each value o
L2, Fig. 2~a! indicates with varying gray tones, the variou
sets of initial conditions $s1% j that lead to different
asymptotic responsess i

j . The thick curves in Fig. 2~a! cor-
respond to theJ values adopted by the first row of the matr
s, i.e.,s1

j , as functions ofL2. Figure 2~b! shows, on the left,
the two sets of initial conditions$s1% j in the subregionR2

2 of
Fig. 2~a! for L2P@20.02, 0.48# andL150.35. On the right,
Fig. 2~b! shows the two asymptotic responsess i

j in time, for
L150.35 andL250.48.

The analogy between a GCM with a given coupling fun
tion Ht and an associated driven map can be carr
further by defining an associated coupling vectorQW
5(Q1 , . . . ,Q i , . . . ,QP), whose components are given b

~6!

The vectorQW depends on the functional form of the glob
coupling, on the partition in theJ asymptotic responses, an
on s, which itself is function ofLW .

Thus the asymptotic behavior of the GCM has been ch
acterized by the matrixx and by the vectorFW . Similarly, the
matrix s and the vectorQW characterize the asymptotic be
havior of the associated driven map. The main point is t
an equivalence between both systems arises whenM5P and
J5K, and simultaneously the conditionQW 5LW is fulfilled. If
en
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e
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-

ed
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,

-
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t

L*
W is a solution of this set ofP nonlinear equations, then th
self-consistent response matrixs(L*

W ) will also describe an
OCB for whichFW 5L*

W . In other words, ifFW 5QW 5L*
W , a set

of N independent driven maps consisting at timei of N1

maps with the values i
1 , N2 maps withs i

2 , . . . , andNK

maps withs i
K , is undistinguishable from a GCM displayin

an OCB characterized byx5s(L*
W ), and a distribution of

elements in clusters given byN1 , . . . ,Nk , . . . ,NK . Obvi-
ously, this OCB is a periodP solution of Eq. ~1!. This
equivalence is the basis for the method presented in the
section.

III. METHOD FOR PREDICTING CLUSTERED
OCB IN GLOBALLY COUPLED MAPS

Now suppose that we want to find out, for a given GC
system described by Eq.~1!, if an OCB with the following
characteristics can be observed:~i! collective periodP, and
~ii ! a distribution of elements inK clusters corresponding to
a partition$pk%5$p1 ,p2 , . . . ,pK%, wherepk5Nk /N is the
fraction of elements in thekth cluster. Then, based on th
analogies presented in Sec. II, the following procedure m
be employed to answer this question:

~a! Determine if there exists a regionRP
K in which the

response matrixs is K3P, by exploring the asymptotic re
sponses of the associated driven map@Eq. ~2!#, for different
drivesLt of the same periodP.

~b! Construct the associated coupling vectorQW
5(Q1 , . . . ,Q i , . . . ,QP), whose components are given b
Eq. ~6!, by takingNk5pk N.

~c! In the regionRP
K of the P-dimensionalLW space, con-

struct the vector field

VW 5LW 2QW . ~7!

If the resulting vector fieldVW in the regionRP
K is such that~1!

it has a locus whereVW 50, and~2! it is convergent toward
this locus, then an OCB having characteristics~i! and ~ii !
can, in general, take place for appropriate initial conditio
in the GCM system.

As argued in Sec. II, condition~1! implies the existence o
an OCB solution for Eq.~1!, characterized byx5s(L*

W ),
with the partition$p1 ,p2 , . . . ,pK%. That is, this method pro-
vides a graphic approach for finding a solutionL*

W to the set
of the P nonlinear equationsQ i5Li .

Condition ~2! is related to the evolutive tendency of th
GCM toward this OCB solution. At each point (L1 , . . . ,LP)
on theRP

K region, a vectorVW can be drawn with its origin a
this point and its tip at the point (Q1 , . . . ,QP), which is
simply the succession of theP values adopted by the cou
pling function H when evaluated at the asymptotic stat
contained ins(L1 , . . . ,LP). Then, because of the analogie
between a GCM system and its associated driven map,
expected that the global couplingHt of a GCM having a
sequence of values matching the set (L1 , . . . ,LP) will tend
to evolve in the direction of the vectorVW located at
(L1 , . . . ,LP). It is also expected that the ability of the vect
VW to signal the evolutive tendency of a GCM increases as
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transient states of the GCM become similar to the states

tained in matrixs(L1 , . . . ,LP). If the vector fieldVW is con-

vergent toward a locus whereVW 50, then a GCM falling in
this convergent region should evolve toward the state

scribed bys(L*
W ). The set of partitions$pk% for which the

vector fieldVW satisfies conditions~1! and ~2! are those that
can arise in the GCM system for appropriate initial con
tions. The method does not tell which initial conditions
the GCM will be conducive toward a specific partition in th
set of possible$pk%.

There exist some cases in which the couplingHt does not

reach the solutionVW 50 but remains around it, even when th

field VW is convergent. As shown in one of the applicatio
below, the OCB in these cases may still be clustered
quasiperiodic. A detailed study of the properties that the fi

VW must possess in order to be associated with quasiperi
OCB’s is out of the scope of this paper.

The form of the vector fieldVW , and that of the locusVW

50, depend on both the local map and the coupling funct
The emergence of an OCB in a GCM is the result of
interplay between local dynamics and the global coupli
both being integral parts of the system. In fact, the meth
allows one to explore the effect of varying either ingredie
of the GCM @Eq. ~1!#, through the changes in the geomet
of the vector fieldVW , which is obtained from the asymptoti
response of the associated driven map@Eq. ~2!#.

The method can be applied whenever the associated
odically driven map exhibits periodic asymptotic behavio
in some regions of theLW space. There is a large family o
maps which satisfy this condition. Notice that the meth
does not require a previous knowledge of the occurrenc
the searched OCB in a given GCM to predict its existen
Additionally, the method provides at least one initial con
tion $x1

n%5$x1
1 ,x1

2 , . . . ,x1
N% to put the associated GCM in th

predicted OCB: it suffices to take, as the initial conditi
$x1

n% of the GCM, the initial condition prescribed by any ro

of the matrixs(L*
W ). Many other initial conditions$x1

n% may
evolve toward this particular OCB; however, the meth
does not give this information.

The partition$pk% can be varied to predict all possib
OCB’s by looking at the convergence of the vector fieldVW

and at the locusVW 50 as a function of$pk%. Moreover, the
first step of the procedure~and the most time consuming!
must be executed only once for a given local dynamicsf and
coupling strengthe; thereafter, steps~b! and ~c! can be per-
formed repeatedly for many different functional forms of t
couplingH and different partitions$p1 ,p2 , . . . ,pK%. In this
way, one can efficiently explore the possible occurrence
various types of OCB’s in different GCM systems with th
same local dynamics, but different coupling functions.

As mentioned, the vector fieldVW is related to the transien
trajectory of the GCM. In order to visualize this relation, o
can perform direct simulations on the GCM and overlap
dynamics of the global couplingHt on the associated vecto
field VW . As it will be seen in the applications, the vector fie
VW acts as an indicator of the transient trajectory of the c
pling function Ht toward its asymptotic periodic behavio
n-

e-
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FW 5L*
W . During this transient interval, the elements of t

system segregate in ‘‘swarms’’ which progressively shrin
and eventually form clusters. Simultaneously,Ht evolves to-
ward its asymptotic behavior. For an initial condition$x1

n%
that leads to the partition$pk%, the trajectory ofHt toward
FW 5L*

W can be represented in theP-dimensionalLW space
as a trajectory joining the point (H1 , . . . ,HP) to
(HP11 , . . . ,H2P) to (H2P11 , . . . ,H3P), . . . , to
(F1 , . . . ,FP)5FW . The transient trajectory ofHt can be su-
perposed to the vector fieldVW corresponding to the partition

$pk%. Then the geometry ofVW and the transient trajectory o
the coupling functionHt toward its asymptotic periodic be
havior FW 5L*

W can be compared. This is a way to test t
ability of VW as indicator of the transient trajectory ofHt .

It should be noted that, without a direct simulation on t
GCM system, steps~a!–~c! of the method can be performed
and conditions~1! and~2! can be checked, in order to predi
that there must exist initial conditions$x1

n% that conduce the

GCM toward the locusVW 50.

IV. APPLICATIONS

In order to show applications of the procedure, we cho
globally coupled logistic mapsf (x)512rx2 in their chaotic
range, and look for an OCB consisting of two clusters
period 2. Different coupling functions will be considere
Parameter values are fixed atr 51.7 ande50.2 in the first
three examples that follow. In the last example,r 52, ande
is varied.

~1! As a first example, the coupling functionHt is as-
sumed to be the arithmetic mean, i.e.,Ht5(1/N)(n51

N xt
n

5^x& t . Therefore,Q i5p1s i
11p2s i

2 , and Vi5Q i2Li , (i

51,2). Figure 3~a! shows the vector fieldVW (L1 ,L2 ,p1) in
the regionR2

2 for partitions p150.56 andp2512p1. The

vector fieldVW (L1 ,L2 ,p1) is plotted as arrows of length pro
portional touVW u, its direction given by tan21(V1 /V2), and its
origin at (L1 ,L2). For different partitions the vector fieldVW
maintains the same appearance, except that the point w
VW 50 moves along the dashed curve in Fig. 3~a! asp1 varies.
The dashed curve is the locusVW 50 as a function ofp1. The
two labeled values ofp1 at the ends of the dashed curve
Fig. 3~a! indicate the position of the convergent pointVW 50
for these critical values ofp1. The marks on this curve ar
made at intervals of 0.02 inp1. Thus the method predicts tha
an OCB of period 2 with two clusters can be observed in
GCM, and that the possible values ofp1 will lie in the range
@0.38,0.62#. However, as stated above, the method does
provide the initial condition$x1

n% of the GCM that will lead
to a specific value ofp1.

In order to make a direct comparison between both,
field VW and the transient dynamics ofHt obtained from direct
simulation of the GCM system, Fig. 3~b! shows their super-
position. The dynamics ofHt corresponds to a GCM with
N52000 elements starting from initial conditions distribut
on @21,1# with uniform probability, i.e.,^x&150. In this
case, direct simulation shows that the GCM rapidly collap
into two clusters with the partitionN15954 andN251046,
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i.e., p150.477. The trajectory of the coupling functionHt is
represented in Fig. 3~b! by joining (H1 ,H2) to (H3 ,H4),
. . . , to (F1 ,F2). The vector fieldVW (L1 ,L2 ,p1) in the re-
gionR2

2 is shown for the same partitionp150.477. Note that,
for the first few iterations, theHt transient trajectory is
roughly suggested by the fieldVW , since at these early stage
the cluster are being formed. As time progresses, the ve

FIG. 3. ~a! The vector fieldVW in the regionR2
2 for an arithmetic

mean coupling function and a partitionp150.56. The dashed curv

is the locusVW 50 as a function ofp1. ~b! Comparison of the vecto

field VW and the trajectory ofHt for a particular case.~c! Magnifi-
cation of ~b!. See example~1!.
or

field VW becomes a better indicator of the evolution of t
GCM system toward its OCB, as shown in Fig. 3~c!. As it

can be seen in Figs. 3~b! and 3~c!, the vector fieldVW contains
valuable information on how a GCM system converges
ward an OCB. The comparison presented in Figs. 3~b! and
3~c! has been used to verify this property of the vector fie
VW in a particular case. However, it should be emphasized
this verification is not required in order to apply the propos
method to predict the existence of OCB’s.

~2! In a second example, we consider the geometric m
of the moduli of the values of the elements of the system
the coupling function, i.e.,Ht5)n51

N uxt
nu1/N. Therefore, in

the regionR2
2 , Q i5us i

1up13us i
2u12p1 ( i 51,2). Figure 4~a!

shows the comparison of the vector fieldVW corresponding to
p150.505 and the trajectory of the coupling functionHt .
The same initial conditions and system size as in the fi
example have been used. The dashed curve is the locVW
50 as a function ofp1. In this case, the convergence to th
OCB is faster than that observed in the first example,
shown in Fig. 4~b!.

~3! Even when the associated driven map has perio
asymptotic regimes in the regionRP

K , the collective behavior
of the corresponding GCM@Eq. ~1!# is not always periodic.
In those cases the matrixx can not be constructed, but th

FIG. 4. ~a! Comparison of the vector fieldVW and the trajectory
of Ht for the geometric mean coupling.~b! Magnification of ~a!.
See example~2!.
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1670 PRE 58A. PARRAVANO AND M. G. COSENZA
vector fieldVW is still useful. In this example, the method wi
be used to infer a global coupling function capable of p
ducing a quasiperiodic OCB with two clusters. This can
achieved by modifying the coupling function of a know
case of periodic OCB, just near its convergent pointVW 50.
Then we may expect that the modified GCM will not rea
its original periodic OCB, but would remain close to it. F
the first example, this can be done by noticing that whenLW is
near the convergent point, one of the two asymptotic
sponses of the driven map inR2

2 adopts a value close to 0.8
every two time steps~i.e., s1

1 in Fig. 2!. Then the coupling
function of the first example may be modified in such a w
that only near 0.86 the function is drastically affected. W
have tried with coupling functions of the type:

Ht5
1

N(
n51

N

xt
nH 12aF12exp S 1

b~xt
n20.86!2D G J . ~8!

The resulting vector fieldVW and the transient trajectory ofHt
for parameters valuesa51.7 andb52103 in Eq. ~8! are
shown in Fig. 5~a!. Additionally, the asymptotic behavior o
the return map of the mean field of the GCM is shown in F
5~b!. This example shows the usefulness of the method
designing globally coupled systems with specific featur

FIG. 5. ~a! The vector fieldVW and the trajectory ofHt for the
modified arithmetic mean global coupling.~b! The asymptotic re-
turn map of the mean state of the system. See example~3!.
-
e

-

y

.
r

s.

The geometry of the locusVW 50 and the type of convergenc
toward it are related to different kinds of collective state
such as periodic or quasiperiodic OCB’s. A quasiperio
OCB appears to be associated with a type of convergenc
the field VW occurring in this example. This type of conve
gence may also occur for other functional forms off andH.

~4! As a last example, for an arithmetic mean global co
pling Ht5^x& t , the method will be used to find OCB’s con
sisting of two identical out of phase clusters of period 2~i.e.,
p15p250.5) that result in a constantHt5C. In this case, it
is sufficient to calculate the response matrixs in the region
R2

2 for drivesL15L25C. The vector fieldVW lies on the line
L15L2 becauseQ15 1

2 (s1
11s1

2)5Q25 1
2 (s2

11s2
2), i.e., the

two asymptotic responses are out of phase, and their su
constant in time. In the present example, the fieldVW 5(Q1
2C,Q22C) can be represented on the plane (C,e) as hori-
zontal arrows of length proportional touVW u, direction given
by the sign ofQ12C, and origin atC. Taking advantage of
its unidirectionality, the vector fieldVW is plotted in Fig. 6 on
the plane (C,e), for the logistic map atr 52.0. The continu-
ous curve corresponds to the locusVW 50. In this example,
the method has been used forK52 and P52, but it may
also be applied to predict OCB’s with other numbers ofK
identical out of phase clusters with periodicityP resulting in
a constant mean field in other ranges ofe.

V. CONCLUSIONS

We have presented a method to study the emergenc
ordered collective behaviors in globally coupled maps, ba
on the analogy between these systems and a driven ma
vector field defined on the space of the drive term in
driven map acts as an indicator of the evolution of the c
pling function in the GCM. The fieldVW is particularly effi-
cient in pointing the transient trajectory of the coupling fun
tion when the associated driven map reaches its asymp
periodic response in few iterations. The method can be u
to predict if specific types of OCB’s can take place in a GC
system, and to visualize its associated basin of attraction

FIG. 6. The vector fieldVW for two identical out of phase cluster
of period 2, on the plane (C,e). The continuous curve correspond

to the locusVW 50. See example~4!.
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the examples with mean field coupling, several cluste
OCB’s were predicted to occur in globally coupled logis
maps, in accordance to numerical simulations performed
Kaneko @10#. Examples~3! and ~4! have illustrated how to
use the procedure for other functional forms of the glo
coupling. It is interesting to note that quasiperiodic OCB
may occur in regions where the associated driven map
periodic asymptotic regimes, as shown in example~3!. A
detailed study of the necessary properties that the vector
VW must possess in order to be associated to a periodi
quasiperiodic OCB would be an interesting problem for
ture work. In the examples, the fieldVW could be represente
on a plane, but, forP>3, projections ofVW may serve to
reveal its global structure. AsP increases, the computatio
time increases potentially withP. Then numerical method
to search for convergence towardVW 50 may be used to spee
up the process.
A

ys

E

d

y

l

as

ld
or
-

The limitation of this method lies on the fact that th
associated driven map must possess periodic asymptoti
sponses, so that the matrixs may be defined. A large family
of maps fulfills this condition. The examples presented h
show that progress in the understanding of the collec
behaviors of the GCM can be made by investigating its
lation with driven maps. Recently, this relation was notic
in Ref. @16#. Extensions of the method presented here co
be applied to other phenomena in globally coupled syste
such as control of chaos, chaotic synchronization, phase
regations, and intermittent OCB’s.
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